Semiparametric mixed‐scale models using shared Bayesian forests
نویسندگان
چکیده
منابع مشابه
Bayesian Semiparametric GARCH Models
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the ...
متن کاملBayesian semiparametric multi-state models
Multi-state models provide a unified framework for the description of the evolution of discrete phenomena in continuous time. One particular example are Markov processes which can be characterised by a set of time-constant transition intensities between the states. In this paper, we will extend such parametric approaches to semiparametric models with flexible transition intensities based on Bay...
متن کاملSemiparametric Bayesian latent trajectory models
Latent trajectory models (LTMs) characterize longitudinal data using a finite mixture of curves. We address uncertainty in the number of latent classes and in the form of the class-specific curves using a semiparametric Bayesian approach. A mixture of functional Dirichlet processes (FDP) is used to characterize the distribution of longitudinal trajectories. The FDP is defined by replacing the a...
متن کاملBayesian Inference for Gaussian Semiparametric Multilevel Models
Bayesian inference for complex hierarchical models with smoothing splines is typically intractable, requiring approximate inference methods for use in practice. Markov Chain Monte Carlo (MCMC) is the standard method for generating samples from the posterior distribution. However, for large or complex models, MCMC can be computationally intensive, or even infeasible. Mean Field Variational Bayes...
متن کاملSemiparametric Bayesian models for human brain mapping
Functional magnetic resonance imaging (fMRI) has led to enormous progress in human brain mapping. Adequate analysis of the massive spatiotemporal data sets generated by this imaging technique, combining parametric and non-parametric components, imposes challenging problems in statistical modelling. Complex hierarchical Bayesian models in combination with computer-intensive Markov chain Monte Ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2019
ISSN: 0006-341X,1541-0420
DOI: 10.1111/biom.13107